Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ultraviolet images of Earth's polar regions obtained by high altitude spacecraft have proved to be immensely useful for documenting numerous features of the aurora and understanding the coupling between Earth's magnetosphere and ionosphere. In this study we have examined images obtained by the far ultraviolet Spectrographic Imager camera on the IMAGE satellite during the first three years of its mission (2000–2002) for comparison with observations of large geomagnetic disturbances (GMDs) by ground‐based magnetometers in eastern Arctic Canada. To our knowledge, this is the first study to investigate the use of high‐altitude imager data to identify the global context of GMDs. We found that rapid auroral motions or localized intensifications visible in these images coincide with regions of largedB/dtas well as localized and closely spaced up/down vertical currents and increased equivalent ionospheric currents, but one of the two events presented did not appear to be related to substorm processes. These magnetic perturbations and currents can appear or disappear in a few tens of seconds, thus highlighting the importance of images with a high cadence.more » « less
-
Abstract Recent observations show very near‐Earth reconnection (∼8–13RE) could efficiently power the ring current during the main phase of geomagnetic storms, but whether the recovery phase might be contributed remains unclear. During the recovery phase of the May 2024 major geomagnetic storm, intense auroral brightening and geomagnetic disturbances were observed at midnight, indicative of particle injections. Current wedges observed by mid‐latitude ground magnetometers around midnight suggest dipolarizing flux bundles (DFBs). The latitude of the auroral brightening was clearly lower than usual, suggesting near‐Earth reconnection (NERX) was closer to Earth than during substorms (∼20–30RE). GOES‐18 at midnight detected magnetic field and plasma signatures consistent with DFBs, following an extremely thin current sheet likely compressed by strong upstream dynamic pressure. These results indicate NERX could have been close enough for resultant DFBs to penetrate geosynchronous orbit and contribute to the ring current during the recovery phase. This scenario deserves further examination in future.more » « less
-
Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves.more » « less
-
Abstract Ultra low frequency (ULF; 1 mHz ‐ several Hz) waves are key to energy transport within the geospace system, yet their contribution to Joule heating in the upper atmosphere remains poorly quantified. This study statistically examines Joule heating associated with ionospheric ULF perturbations using Super Dual Auroral Radar Network (SuperDARN) data spanning middle to polar latitudes. Our analysis utilizes high‐time‐resolution measurements from SuperDARN high‐frequency coherent scatter radars operating in a special mode, sampling three “camping beams” approximately every 18 s. We focus on ULF perturbations within the Pc5 frequency range (1.6–6.7 mHz), estimating Joule heating rates from ionospheric electric fields derived from SuperDARN data and height‐integrated Pedersen conductance from empirical models. The analysis includes statistical characterization of Pc5 wave occurrence, electric fields, Joule heating rates, and azimuthal wave numbers. Our results reveal enhanced electric fields and Joule heating rates in the morning and pre‐midnight sectors, even though Pc5 wave occurrences peak in the afternoon. Joule heating is more pronounced in the high‐latitude morning sector during northward interplanetary magnetic field conditions, attributed to local time asymmetry in Pedersen conductance and Pc5 waves driven by Kelvin‐Helmholtz instability. Pc5 waves observed by multiple camping beams predominantly propagate westward at low azimuthal wave numbers , while high‐m waves propagate mainly eastward. Although Joule heating estimates may be underestimated due to assumptions about empirical conductance models and the underestimation of electric fields resulting from SuperDARN line‐of‐sight velocity measurements, these findings offer valuable insights into ULF wave‐related energy dissipation in the geospace system.more » « less
-
Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves.more » « less
-
The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts.In-situmulti-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations.more » « less
-
The dynamics of Earth’s magnetopause, driven by several different external/internal physical processes, plays a major role in the geospace energy budget. Given magnetopause motion couples across many space plasma regions, numerous forms of observations may provide valuable information in understanding these dynamics and their impacts. In-situ multi-point spacecraft measurements measure the local plasma environment, dynamics and processes; with upcoming swarms providing the possibility of improved spatiotemporal reconstruction of dynamical phenomena, and multi-mission conjunctions advancing understanding of the “mesoscale” coupling across the geospace “system of systems.” Soft X-ray imaging of the magnetopause should enable boundary motion to be directly remote sensed for the first time. Indirect remote sensing capabilities might be enabled through the field-aligned currents associated with disturbances to the magnetopause; by harnessing data from satellite mega-constellations in low-Earth orbit, and taking advantage of upgraded auroral imaging and ionospheric radar technology. Finally, increased numbers of closely-spaced ground magnetometers in both hemispheres may help discriminate between high-latitude processes in what has previously been a “zone of confusion.” Bringing together these multiple modes of observations for studying magnetopause dynamics is crucial. These may also be aided by advanced data processing techniques, such as physics-based inversions and machine learning methods, along with comparisons to increasingly sophisticated geospace assimilative models and simulations.more » « less
-
Abstract Submarine cables have experienced problems during extreme geomagnetic disturbances because of geomagnetically induced voltages adding or subtracting from the power feed to the repeaters. This is still a concern for modern fiber‐optic cables because they contain a copper conductor to carry power to the repeaters. This paper provides a new examination of geomagnetic induction in submarine cables and makes calculations of the voltages experienced by the TAT‐8 trans‐Atlantic submarine cable during the March 1989 magnetic storm. It is shown that the cable itself experiences an induced electromotive force (emf) and that induction in the ocean also leads to changes of potential of the land at each end of the cable. The process for calculating the electric fields induced in the sea and in the cable from knowledge of the seawater depth and conductivity and subsea conductivity is explained. The cable route is divided into 9 sections and the seafloor electric field is calculated for each section. These are combined to give the total induced emf in the cable. In addition, induction in the seawater and leakage of induced currents through the underlying resistive layers are modeled using a transmission line model of the ocean and underlying layers to determine the change in Earth potentials at the cable ends. The induced emf in the cable and the end potentials are then combined to give the total voltage change experienced by the cable power feed equipment. This gives results very close to those recorded on the TAT‐8 cable in March 1989.more » « less
-
Abstract A variety of magnetosphere‐ionosphere current systems and waves have been linked to geomagnetic disturbance (GMD) and geomagnetically induced currents (GIC). However, since many location‐specific factors control GMD and GIC intensity, it is often unclear what mechanisms generate the largest GMD and GIC in different locations. We address this challenge through analysis of multi‐satellite measurements and globally distributed magnetometer and GIC measurements. We find embedded within the magnetic cloud of the 23–24 April 2023 coronal mass ejection (CME) storm there was a global scale density pulse lasting for 10–20 min with compression ratio of . It caused substantial dayside displacements of the bow shock and magnetopause, changes of and , respectively, which in turn caused large amplitude GMD in the magnetosphere and on the ground across a wide local time range. At the time this global GMD was observed, GIC measured in New Zealand, Finland, Canada, and the United States were observed. The GIC were comparable (within factors of 2–2.5) to the largest ever recorded during 14 year monitoring intervals in New Zealand and Finland and represented 2‐year maxima in the United States during a period with several Kp7 geomagnetic storms. Additionally, the GIC measurements in the USA and other mid‐latitude locations exhibited wave‐like fluctuations with 1–2 min period. This work suggests that large density pulses in CME should be considered an important driver of large amplitude, global GMD and among the largest GIC at mid‐latitude locations, and that sampling intervals are required to capture these GMD/GIC.more » « less
-
Abstract Dipolarizing flux bundles (DFBs) have been suggested to transport energy and momentum from regions of reconnection in the magnetotail to the high latitude ionosphere, where they can generate localized ionospheric currents that can produce large nighttime geomagnetic disturbances (GMDs). In this study we identified DFBs observed in the midnight sector from ∼7 to ∼10 REby THEMIS A, D, and E during days in 2015–2017 whose northern hemisphere magnetic footpoints mapped to regions near Hudson Bay, Canada, and have compared them to isolated GMDs observed by ground magnetometers. We found 6 days during which one or more of these DFBs coincided to within ±3 min with ≥6 nT/s GMDs observed by latitudinally closely spaced ground‐based magnetometers located near those footpoints. Spherical elementary current systems (SECS) maps and all‐sky imager data provided further characterization of two events, showing short‐lived localized intense upward currents, auroral intensifications and/or streamers, and vortical perturbations of a westward electrojet. On all but one of these days the coincident DFB—GMD pairs occurred during intervals of high‐speed solar wind streams but low values of SYM/H. The observations reported here indicate that isolated DFBs generated under these conditions influence only limited spatial regions nearer Earth. In some events, in which the DFBs were observed closer to Earth and with lower Earthward velocities, the GMDs occurred slightly earlier than the DFBs, suggesting that braking had begun before the time of the DFB observation.more » « less
An official website of the United States government

Full Text Available